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Abstract. We study a broad class of increasing non-convex functions whose level sets are star shaped
with respect to infinity. We show that these functions (we call them ISSI functions) are abstract
convex with respect to the set of min-type functions and exploit this fact for their minimization. An
algorithm is proposed for solving global optimization problems with an ISSI objective function and
its numerical performance is discussed.
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1. Introduction

There exist a number of techniques for finding a global optimum of a non-convex
function, each of them has advantages and shortcomings. As there is no univer-
sal algorithm which would be efficient for any global optimization problem, it is
most important to create conceptual and numerical schemes which will lead to
the solution of problems with objective functions and/or constraints with special
properties.

In this paper we consider an approach to global optimization which is based
on the use of abstract convexity, in other terms, ‘convexity without linearity’ (see
[13, 16, 23]). It allows to extend the convex analysis to broad classes of non-convex
problems and to generalize known methods of cutting plane or bundle type for
optimization problems with abstract convex objective functions.

There are a number of numerical algorithms which are actually based on ab-
stract convexity ideas. For instance, the algorithm of Mladineo (see [15]) for max-
imizing Lipschitz functions can be considered as a method of abstract convex pro-
gramming with quadratic convex functions as majorants of the objective. Recently,
the cutting angle method for minimizing the so-called increasing convex-along-
rays (ICAR) functions has been proposed which is based on the representation of
the objective as the supremum of min-type functions (see [2]).

In this paper we consider a class of objective functions which are increasing and
have star-shaped (with respect to∞) level sets (we call them ISSI functions). Such
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functions form a lattice and have a number of nice properties simplifying their op-
timization. The mathematical programming problems with ISSI objective functions
have various applications in practise, especially in mathematical economics which
makes them very significant. For instance Intriligator [11] considers the functions
with this property as the main kind of production functions.

In general, an ISSI function has multiple local extrema and it is neither con-
vex nor concave. Hence it is impossible to apply to its minimization local search
methods or methods of concave minimization directly. Since ISSI functions can be
approximated by the so-called min-type functions due to their abstract convexity
properties, the problem of minimizing an ISSI function can be reduced to a se-
quence of minimax problems, or to a sequence of problems of mixed integer linear
programming. Certainly, each subproblem of this type is difficult to solve and its
complexity grows fast with respect to the dimensionality of the initial problem.
However, using special reduction techniques, it is possible to obtain good numer-
ical performance, if the number of variables is not large. It can be advantageous to
combine methods based on abstract convexity with a local search, thus obtaining
hybrid methods. In this case the abstract convex programming is used in order to
find an approximate solution and the local search improves it. It is important to
note that many optimization problems can be reduced to a problem with an ISSI
objective function by a suitable transformation of variables.

2. Preliminaries

In the sequel we shall need some definitions from abstract convexity (for detailed
presentation see [16, 13, 23]).

DEFINITION 2.1. LetX be an arbitrary set andH : X→ R be a set of functions.
A function f : X → R+∞ = R ∪ {+∞} is calledabstract convexwith respect to
H orH -convex if there is a setU ⊂ H such that

f (x) = sup{h(x) : h ∈ U } for all x ∈ X.
A function f : X → R−∞ is calledabstract concavewith respect toH or H -
concave if there is a setU ⊂ H such that

f (x) = inf{h(x) : h ∈ U } for all x ∈ X.
The setH in this definition is called sometimes theset of elementary functions.
Let

s−(f ) = {h ∈ H : h 6 f }, s+(f ) = {h ∈ H : h > f }.
It follows immediately from the definition that a functionf isH -convex (respect-
ively H -concave) if and only iff (x) = sup{h(x) : h ∈ s−(f )} (respectively
f (x) = inf{h(x) : h ∈ s+(f )).
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Applications of abstract convexity are mainly based on the notion of the sub-
gradient. There are various approaches to the definition of subgradients (see [16,
23, 20]). For our purpose the most suitable is the following one.

DEFINITION 2.2. A functionh ∈ H is called asubgradientof anH -convex
function f at a pointxo if h(x) 6 f (x) for all x ∈ X andf (xo) = h(xo). A
functionh ∈ H is called asupergradientof aH -concave functionf at a pointxo
if h(x) > f (x) for all x ∈ X andh(xo) = f (xo).
The set of all subgradients (supergradients) of aH -convex (H -concave) functionf
at the pointxo is called thesubdifferential(thesuperdifferential) off at the pointx.
It follows directly from the definition that the subdifferential ofH -convex function
f at a pointxo is not empty if and only iff (xo) = max{h(xo) : h ∈ s−(f )}.

3. Star-shaped functions

A real-valued functionf defined on a coneK in a n-dimensional spaceRn is
called 0-star-shaped (or star-shaped with respect to 0) iff (λx) 6 λf (x) for all
x ∈ K and all nonnegativeλ 6 1. This term was introduced in a slightly different
situation by Pallaschke and Rolewicz ([16]). Iff is 0-star-shaped then its lower
level sets{x : f (x) 6 c} are 0-star-shaped for allc > 0. Recall that a setA is
called 0-star-shaped if

x ∈ A, λ ∈ [0,1] H⇒ λx ∈ A.
Of course there exist non 0-star-shaped functions with 0-star-shaped level sets. A
full description of such functions is given in [22] (for the case, when the coneK

coincides with the entire space).
The complement to a 0-star-shaped set is the so-called+∞-star-shaped set (see

[19] for details), that is a setB with the property

x ∈ B, λ > 1 H⇒ λx ∈ B.
Convex+∞-star-shaped sets have been studied by many authors (see for example
[17, 4, 14] and references therein).

Having in mind this terminology, we introduce the following definition: A real-
valued functionf defined on a coneK is called+∞-star-shapedif

f (λx) > λf (x) for all x ∈ K, λ ∈ [0,1] (1)

Note thatf (0) > 0 for a+∞-star-shaped function.
It is easy to check thatf is+∞-star-shaped if and only if

f (µx) 6 µf (x) for all x ∈ K, µ > 1 (2)

Indeed, letf be+∞-star-shaped . Letµ > 1, x ∈ K andµx = x′. Sincex = λx′
with λ = 1/µ 6 1, it follows thatf (x) > λf (x′). We have proved that (1) implies
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(2). The same reasoning shows that (2) implies (1). We will consider mainly+∞-
star-shaped functions defined on the coneRn+ of all n-vectors with nonnegative
coordinates. Sometimes we will consider the restriction of such functions on the
coneRn++ of all vectors with positive coordinates.

The coneRn+ introduces the usual coordinate-wise order relation in the space
Rn. We will use the following notation:x > y if x − y ∈ Rn+; x > y if x > y and
x 6= y andx � y if x − y ∈ Rn++. A functionf defined on the coneRn+ is called
increasing ifx > y impliesf (x) > f (y).

We will study in this paper increasing+∞-star-shaped (briefly ISSI) functions.
Since an ISSI functionf is increasing andf (0) > 0 it follows thatf (x) > 0 for
all x ∈ Rn+.

Let us check that an ISSI functionf is continuous on the coneRn++. In fact let
x � 0 and xk → x. Let ε > 0. Then for sufficiently largek we have(1− ε)x 6
xk 6 (1+ ε)x. Using properties of the functionf and (1), (2) we have

(1− ε)f (x) 6 f ((1− ε)x) 6 f (xk) 6 f ((1+ ε)x) 6 (1+ ε)f (x).
The continuity has been proved.

The setF(ISSI) of ISSI functions possesses the following useful properties.

(1) F(ISSI) is a convex cone: iff, g are ISSI andλ,µ are positive numbers then
alsoλf + µg is ISSI;

(2) F(ISSI) is a conditionally complete lattice; more precisely, for an arbitrary
family (fα)α∈A of ISSI functions the point-wise infimum infα∈A fα is ISSI
as well. If the family(fα)α∈A is bounded above, that is there exists a ISSI
function f such thatfα 6 f for all α ∈ A, then the point-wise supremum
supα∈A fα is also ISSI.

(3) If the family fk of ISSI functions point-wise converges to a finite functionf
thenf is also an ISSI function.

We need the following definitions. An increasing functionf : Rn+ → R is
calledconvex-along-rays(briefly ICAR(X)) if for eachx ∈ Rn+ the functionfx =:
f (αx) is convex on(0,+∞). An increasing functionf is calledconcave-along-
rays (briefly ICAR(E)) if the functionfx(α) is concave on(0,+∞) for eachx ∈
Rn+. ICAR(X) functions are studied in details in [20]. It is easy to check that an
ICAR(E) functionf such thatf (0) > 0 is ISSI. In fact we have for eachx ∈ Rn+
andλ ∈ [0,1]:

f (λx) = fx(λ) = fx(λ+ (1− λ)0) > λfx(1)+ (1− λ)f (0) > λf (x).
Let us give some examples of ISSI functions.

EXAMPLE 3.1. An increasing positively homogeneous of degree 0< δ 6 1
function f is ISSI. Indeed such a function is ICAR(E). (Ifδ > 1 thenf is an
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ICAR(X) function). In particular a Cobb-Douglas function

f (x) = Cxα1
1 · · · xαnn with αi > 0,

∑
i

αi 6 1 (3)

is ISSI. Note that if
∑

i αi > 1 then the Cobb-Douglas function is ICAR(X). The

function fp(x) = (
∑

i x
p

i )
1
p (x ∈ Rn+) with p > 0 is also ISSI. Note that this

function is convex ifp > 1 and concave ifp 6 1.

EXAMPLE 3.2. A concave increasing functionf defined onRn+ with f (0) > 0
is ISSI. Indeedf is ICAR(E). In particular the sum of two functions of the form
(3) is concave increasing.

EXAMPLE 3.3. The point-wise supremumf of a family of ICAR(E) functions
(fα)α∈A is an ISSI function, providedf (x) < +∞ for all x. Note that this function
is not necessary ICAR(E).

EXAMPLE 3.4. Letf1, . . . , fk be increasing positively homogeneous of degree
0< δk 6 1 functions. Then their sum, minimum and maximum are ISSI functions.

4. ISSI functions and IPH functions

There exist close relations between ISSI functions and the so-called IPH functions
(IPH stands forincreasingandpositively homogeneous of degree onefunctions).

In order to establish these relations we need the following definition: Letf be
a function defined on a coneRn+. A function f̂ defined on the cone

Rn+1
∗ = {(x, λ) : x ∈ Rn+, λ > 0} ∪ {0,0} (4)

by the formula

f̂ (x, λ) = λf (x
λ
), (x ∈ K, λ > 0), f̂ (0,0) = 0. (5)

is called thepositively homogeneous extensionof the functionf .
The following result has been proved in [1]. We give its proof for completeness.

THEOREM 4.1. A functionf defined onRn+ is ISSI if and only if its positively
homogeneous extension̂f (x, λ) is increasing in both variablesx, λ.

Proof: Let f be an ISSI function. Sincef (x) > 0 for all x ∈ Rn+ it follows
that f̂ (x, λ) = λf (x/λ) > 0. Consider now two points(x1, λ1) and(x2, λ2) with
x1, x2 ∈ Rn+, x1 > x2 andλ1 > λ2 > 0 . We have

f̂ (x1, λ1) = λ1f (
x1

λ1
) > λ1f (

x2

λ1
) = λ1f (

λ2

λ1

x2

λ2
) > λ2f (

x2

λ2
) = f̂ (x2, λ2).



24 A. M. RUBINOV AND M. YU. ANDRAMONOV

Thus f̂ is an increasing function. We now assume thatf̂ is increasing. Then
f̂ (x, λ) > f̂ (0,0) = 0, in particularf (0) = f̂ (0,1) > 0. If x1 > x2 then
f (x1) = f̂ (x1,1) > f̂ (x2,1) = f (x2). Thusf is increasing. Letλ ∈ (0,1). Then
(λx, λ) 6 (λx,1), hence

λf (x) = f̂ (λx, λ) 6 f̂ (λx,1) = f (λx).
If λ = 0 then 0= λf (x) 6 f (0) = f (λx). Thusf is ISSI function. 2
REMARK 4.1. The same reasoning shows that the following assertion holds:
a functionf defined onRn+ is 0-star-shaped and decreasing if and only if the
positively homogeneous extension̂f is decreasing in both variables.

Theorem 4.1 allows to study ISSI functions with the help of IPH functions,
which are simpler.

5. IPH functions

We study increasing positively homogeneous of the first degree(IPH) functions in
this section. The simplest examples of IPH functions are given by min-type and
max-type functions:

l−(x) = min
i∈T (l)

lixi := 〈l, x〉− (6)

and

l+(x) = max
i∈I

lixi := 〈l, x〉+. (7)

Herel = (l1, . . . , ln) ∈ Rn+, I = {1,2, . . . , n} andT (l) = {i ∈ I : li > 0}. It is
assumed the the minimum over the empty set is equal to zero.

We denote mini∈T (l) lixi by 〈l, x〉− and maxi∈I lixi by 〈l, x〉+.
We will show in this section that each IPH function defined onRn+ is abstract

convex with respect to the setL− of min-type functions of the form (6) and the
restriction of each IPH function on the coneRn++ is abstract concave with respect
to the setL+ of all max-type functions of the form (7).

For this purpose we will consider the subdifferential∂p−(y) of an IPH function
p with respect toL− and the superdifferential∂p+(y) of the functionp with respect
toL+ (see Definition 2.2). By this definition

∂−p(y) = {l ∈ Rn+ : 〈l, x〉− 6 p(x) ∀x ∈ Rn+, 〈l, y〉− = p(y)}.

∂+p(y) = {l ∈ Rn+ : 〈l, x〉+ > p(x) ∀x ∈ Rn+, 〈l, y〉+ = p(y)}.
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For l ∈ Rn+ we define the vectorl−1 = 1

l
by the formula:

1

l
=


1

li
i ∈ T (l)

0 i 6∈ T (l)
Clearly,〈l, 1

l
〉− = 〈l, 1

l
〉+ = 1 for l 6= 0.

PROPOSITION 5.1.Letp be an IPH function. Then the set∂p−(y) is not empty
for all y > 0; if p(y) > 0 then

∂−p(y) = {l : T (l) ⊂ T (y) : l > p(y)

yl
, p(

1

l
) = 1} (8)

where the coordinate(yl)i of the vectoryl is equal to coordinateyi of the vectory
if i ∈ T (l) and equal to zero ifi 6∈ T (l).
Proof: If p(y) = 0 then 0∈ ∂−p(y) and therefore∂−p(y) is nonempty. Consider
now a pointy with p(y) > 0. Let

A = {l : T (l) ⊂ T (y), l > p(y)

yl
, p(

1

l
) > 1}.

It is easy to check thatA is equal to the set on the right hand side of (8). Indeed let
l ∈ A. The relationsT (l) ⊂ T (y) andl > p(y)/yl show thatyl > p(y)/ l. Since
p is IPH,y > yl andp(1/ l) > 1 we have

p(y) > p(yl) > p(
p(y)

l
) = p(y)p(1

l
) > p(y).

Sop(1/ l) = 1 and the required equality has been proved.
Thus we should prove that∂−p(y) = A. Let l ∈ A. First we check that

〈l, x〉− 6 p(x) for all x ∈ Rn+. Assume on the contrary that there existsz ∈ Rn+
such that〈l, z〉− = mini∈T (l) lizi > p(z). Thenlizi > p(z) for all i ∈ T (`), hence
T (l) ⊂ T (z) and there existsε > 0 such that

zi >
p(z)

li
+ ε

li
for all i ∈ T (l).

Thusz > (p(z)+ ε)(1/ l). Sincep is increasing it follows that

p(z) > p((p(z)+ ε)1
l
) = (p(z)+ ε)p(1

l
) > p(z)+ ε.

We have a contradiction, hence〈l, x〉− 6 p(x) for all x ∈ Rn+. Consider now the
vectory. SinceT (l) ⊂ T (y) andl > p(y)/yl, it follows that liyi > p(y) for all
i ∈ T (l). Thus〈l, y〉− > p(y). The inequality〈l, y〉− 6 p(y) has already been
proved. Thus〈l, y〉− = p(y) and therefore∂−p(y) ⊃ A.
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We now check that the setA is not empty. Indeed letl = p(y)/y. ThenT (l) =
T (y). Sincep(y) 6= 0, the vector 1/ l= y/p(y) is well-defined andp(1/ l) = 1.
Thusl ∈ A. We have proved that the subdifferential∂−p(y) is not empty.

Let us show that∂−p(y) ⊂ A if p(y) > 0. Let l ∈ ∂−p(y) that is〈l, x〉− 6
p(x) for all x and mini∈T (l) liyi = 〈l, y〉− = p(y). Sincep(y) > 0 it follows
thatyi > 0 for i ∈ T (l), henceT (l) ⊂ T (y). The inequalityliyi > p(y) for all
i ∈ T (l) shows thatl > p(y)/yl. We also have

p(
1

l
) > 〈l, 1

l
〉− = 1

Thusl ∈ A. 2
COROLLARY 5.1. If p(y) > 0 thenl = p(y)

y
∈ ∂−p(y).

COROLLARY 5.2. An IPH function is abstract convex with respect to the setL−
of functions of the form (6).

REMARK 5.1. Consider an IPH functionp of n+1 variables defined on the cone
Rn+1∗ = {(x, λ) : x ∈ Rn+, λ > 0} ∪ {0,0}. Clearly Proposition 5.1 and Corollary
5.2 hold also for this function.

A functionp is calledstrictly increasing at a pointy ∈ Rn+ if for eachx ∈ Rn+
with x < y the inequalityp(x) < p(y) holds. It is clear thatp(y) > 0 for an IPH
functionp, strictly increasing at a pointy.

PROPOSITION 5.2.If an IPH functionp is strictly increasing at a pointy then

(l ∈ ∂−p(y), T (l) = T (y)) H⇒ l = p(y)

y
.

Proof: It follows from Proposition 5.1 that we have to check that the relations

T (l) = T (y), l > p(y)

yl
, p(

1

l
) = 1 (9)

imply l = p(y)/y. Takel such that (9) holds. Clearlyy > p(y)/ l. Assumey 6=
p(y)/ l. Sincep is strictly increasing at the pointy we have

p(y) > p(
p(y)

l
) = p(y)p(1

l
) and p(y) > 0

Thusp(1/ l) < 1 which is a contradiction. 2
Let us give some examples.

EXAMPLE 5.1. Letp(x) = maxi∈I xi and1= (1,1, . . . ,1). Then

∂−p(1) = {l : l > 1l , max
i∈T (l)

1

li
= 1} = {l : l > 1l , min

i∈T (l)
li = 1}.
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EXAMPLE 5.2. Letp(x) = mini∈I xi . We have

∂−p(1) = {l : l > 1l , min
i∈T (l)

1

li
= 1} = {l : l > 1l , max

i∈T (l)
li = 1}.

Thus∂−p(1) = {1K : K ⊂ I } where1K is a vector such that that itsith coordinate
is equal to 1 fori ∈ K and equal to zero fori 6∈ K. In other words,∂−p(1)
coincides with the set of all non zero vertices of then-dimensional cube{x : 0 6
x 6 1}.
EXAMPLE 5.3. Letp(x) = (x1 · x2 · · · xn) 1

n . It is easy to check that the IPH
functionp is strictly increasing at the point1 and the inequality〈l, x〉− 6 p(x) for
all x impliesT (l) = I . It follows from Proposition 5.2 that∂−p(1) = {1}.

We shall now study the superdifferential

∂+p(y) = {l ∈ Rn+ : 〈l, x〉+ > p(x) ∀x ∈ Rn+, 〈l, y〉+ = p(y)}
of an IPH functionp at a pointy ∈ Rn+ with respect to the setL+. Let us give
an example which shows that the superdifferential∂+p(y) can be empty for some
pointsy ∈ Rn+.

EXAMPLE 5.4. Letp be an IPH function such that

(1) there exists a non-zero elementy with the propertyp(y) = 0 (in this casey
is a boundary point of the coneRn+);

(2) if xk = x(1)+xk(2) wherex(1) is a fixed vector fromRn++, T (xk(2)) ⊂ T (y) and
‖xk(2)‖ → +∞ ask→∞, thenp(xk)→+∞.

Assumel ∈ ∂+p(y). Then〈l, y〉+ = maxi∈I liyi = p(y) = 0, henceli = 0 for
i ∈ T (y). ThusT (l) ⊂ (I \ T (y)). Let x � 0 be a vector such thatlixi = 1 for
i ∈ T (l) andxi for i 6∈ T (l) be sufficiently large so thatp(x) > 1. (It follows from
2) that such a vector exists). Since〈l, x〉+ = 1, the inequality〈l, x〉+ > p(x) does
not hold. Thus∂+p(y) is empty.

Consider in particular a functionp(x) = (x1 ·x2 · · · xn) 1
n . It follows from above

that the superdifferential∂+p(y) is empty for each boundary pointy of the cone
Rn+.

Nevertheless, ify � 0 then the superdifferential∂+p(y) is nonempty and it
contains interior points of the coneRn+.

PROPOSITION 5.3.Letp be an IPH function andy � 0. Then∂+p(y) ∩ Rn++
is nonempty and

∂+p(y) ∩ Rn++ = {l � 0 : l 6 p(y)

y
, p(

1

l
) = 1} (10)
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Proof: We will use the same arguments as in the proof of Proposition 5.1. First we
show that the set on the right hand side of (10) coincides with the following setB:

B = {l � 0 : l 6 p(y)

y
, p(

1

l
) 6 1}.

Indeed, ifl ∈ B theny 6 p(y)/ l, hence

p(y) 6 p(p(y)
l
) = p(y)p(1

l
).

Sincep(y) > 0 we havep(1/ l) > 1. On the other handp(1/ l) 6 1. Thus the
required equality has been proved. Letl ∈ B. Sincel 6 p(y)/y it follows that

max
i∈T (y)

liyi = max
i∈I

liyi = 〈l, y〉+ 6 p(y). (11)

We now check that〈l, x〉+ > p(x) for all x ∈ Rn+. Assume, on the contrary,
that there existsz such that〈l, z〉+ < p(z). Thenlizi < p(z) for all i ∈ I , therefore
z < p(z)/ l. There existsε > 0 such that(1+ ε)z < p(z)/ l. We have

(1+ ε)p(z) = p((1+ ε)z) 6 p(p(z)
l
) = p(z)p(1

l
).

Sincep(z) > 0 it follows thatp(1
l
) > 1 + ε. We have a contradiction which

shows that〈l, x〉+ > p(x) for all x. In particular,〈l, y〉+ > p(y). Combining this
inequality with (11) we conclude that〈l, y〉+ = p(y). Thusl ∈ ∂+p(y). Clearly,
the elementl = p(y)/y belongs to the setB. Thus the superdifferential∂+p(y) is
not empty.

Assume now that an elementl � 0 belongs to∂+p(y). Then 1= 〈l,1/ l〉+ >
p(1/ l). It follows from the equality〈l, y〉+ = p(y) thatl 6 p(y)/y. Thusl ∈ B.2
COROLLARY 5.3. The restriction of IPH function on the coneRn++ is abstract
concave with respect to classL+.

6. Subdifferentials and superdifferentials of ISSI functions

In this section we study ISSI functions using results of the previous sections.
Let f be an ISSI function. Consider its positively homogeneous extensionf̂

defined on the coneRn+1∗ (see (4) for the definition of this cone).
It follows from Theorem 4.1 that̂f is an IPH function on the coneRn+1∗ , so (see

Corollary 5.2 and Remark 5.1) this function is abstract convex with respect to the
setL̂− of all functions l̂ defined onRn+1

+ by the formula (6). We present a vector
l̂ ∈ Rn+1+ in the form l̂ = (l, c) wherel ∈ Rn+, c > 0. Letx ∈ Rn+ andx̂ = (x,1).
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We have

f (x) = f̂ (x̂)
= sup{min

i∈T (l̂)
l̂i x̂i : l̂ ∈ L̂−, l̂ 6 f̂ }

= sup{min( min
i∈T (l)

lixi , c) : l̂ = (l, c), l ∈ L−, c > 0, l̂ 6 f } (12)

It follows from (12) thatf is abstract convex with respect to the setH− of functions
h : Rn+ → R+ of the formh(x) = min(〈l, x〉−, c) with l ∈ Rn+ andc > 0.

Let f be an ISSI function andy ∈ Rn+. Denote by∂̄−f (y) the subdifferential
of the functionf at the pointy with respect to the setH−. If f (y) = 0 then this
subdifferential is not empty, it contains the functionh = 0 which belongs toH.
Assume now thatf (y) > 0. Thenf̂ (ŷ) = f (y) > 0 and therefore (see Corollary
5.1)

f̂ (ŷ)

ŷ
= f (y)

(y,1)
∈ ∂−f̂ (y).

It follows from this inclusion that

f (y) = f̂ (ŷ) = min(min
iT (y)

f (y)

yi
,
f (y)

1
) = min(〈f (y)

y
, y〉−, f (y)) (13)

and for eachx ∈ Rn+

min(〈f (y)
y
, x〉−, f (y)) 6 f̂ (x,1) = f (x). (14)

Let

h(x) = min(〈f (y)
y
, x〉−, f (y)).

It is clear thath ∈ H−. Formulae (13) and (14) show thatf is an element of the
subdifferential∂̄−f (x) of the functionf at the pointx with respect to the setH−.
Thus∂̄−f (x) is not empty.

We now give a description of the subdifferential∂̄−f (x), by assuming that
f (x) > 0. Applying Proposition 5.1 and Remark 5.1 we can conclude that

∂−f̂ (x̂) = {l̂ = (l, µ) ∈ Rn+1
+ : T (l̂) ⊂ T (x̂) : l̂ > f̂ (x̂)

x̂l̂
, f̂ (

1

l̂
) = 1} (15)

Since

f̂ (
1

(l, µ)
) = 1

µ
f̂ (
µ

l
,1) = 1

µ
f (
µ

l
)
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we can present (15) in the following form:

∂−f̂ (x̂) = {(l, µ) ∈ Rn+ × R+ : T (l) ⊂ T (x) : l >
f (x)

xl
, µ

> f (x), f (µ
l
) = µ}. (16)

Clearly ∂̄−f (x) coincides with the set on the right side of (16).
The same arguments show that the restriction of an ISSI functionf on the cone

Rn++ is abstract concave with respect to the setH+ of max-type functionsh of the
form h(x) = max(〈l, x〉+, c) with l ∈ Rn+ andc > 0 . We can easily describe the
superdifferential of the functionf at a pointy � 0 with respect to the setH+. In
particular the function

h(x) = max(〈f (y)
y
, x〉+, f (y))

belongs to the superdifferential.

7. Algorithm

We consider the following optimization problem

f (x) −→ min subject to x ∈ X (17)

wheref is an ISSI function (in particular, it can be an IPH function),X is a closed
convex set fromRn+.

We propose for the solution of this problem a variant of the8-bundle method,
the conceptual scheme of which can be found in (see [16]). Note that for IPH
functions it is possible to apply the so called "cutting angle method" proposed in
[2]. However, the method which we consider in this paper, is different, as instead
of the minorants of the type mini `ixi + c we use the functions min{mini `ixi, c}.
The algorithm can be considered as an extension of the cutting plane method [12]
for convex optimization to a problem with an ISSI objective function.

ALGORITHM 1. Method of minimizing an ISSI function

Step 0.Let k := 0. Choose an arbitrary initial pointxo ∈ X.
Step 1.Calculate an element of the subdifferential(hk, ck) ∈ ∂Lf (xk). Denote
fk(x) = min(〈hk, x〉−, ck).
Step 2.Solve the following subproblem

max
06i6k

fi(x) −→ min subject to x ∈ X. (18)

Step 3.Let y∗ be a solution of the problem (18). Letk := k + 1, xk = y∗ and go to
step 1.

The convergence theorem for this algorithm is the following.
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THEOREM 7.1. LetX be a compact set and the directional derivativesf ′k(x) be
uniformly bounded on the setX:

‖f ′k(x)‖ = max
‖u‖61
|f ′k(x, u)| 6 R < +∞ for all x ∈ X, k = 0,1, . . . (19)

Then each limit pointx of the sequence(xk) is a global minimum point of the
problem (17).

Proof: Obviously,fk(x) are concave functions. As the directional derivatives of
them are bounded, the conditions of a theorem of convergence from [2] are satis-
fied. Applying this theorem, we obtain the convergence result. 2

If we have a maximization problem,

f (x) −→ max subject to x ∈ X, (20)

wheref is an ISSI function andX ⊂ Rn++, the situation is similar. Instead of
an element of the subdifferential we need to take an element of the superdifferen-
tial and instead of minimizing the maximum offk(x) we need to maximize the
minimum offk. The same convergence result holds (the proof is analogous).

In general, it is difficult to apply a8−bundle method for minimizing an abstract
convex function, as there is no explicit formula for its subdifferential. The main
advantage of ISSI functions is that it is possible to calculate an element of the
abstract subdifferential numerically. This allows to construct a fully implementable
algorithm of their minimization.

8. Solution of the subproblem

The crucial part of our method is the solution of the auxiliary subproblem in Step 2.
Let us express the subproblem in the following form:

t → min

min(〈hi, x〉−, ci) 6 t ∀i = 0, k

s.t. x ∈ X (21)

As ci > 0 for all i due to the properties of ISSI functions, the optimal value of
t is in the interval[0,maxi=0,k min(〈hi, x0〉−, ci)]. Applying the dichotomy with
respect tot, we obtain a sequence of the systems:

min(〈hi, x〉−, ci) 6 t̃ ∀i = 0, k,

x ∈ X,
wheret̃ is some fixed value in the interval[0,maxi=0,k min(〈hi, x0〉−, ci)].

Then, if for somej we havecj 6 t̃ , the corresponding inequality is redundant
and it can be eliminated. Vice versa, ifcj > t̃, then the corresponding constantcj
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is redundant and the same constraint can be rewritten without the constant. Thus
we obtain the following system for eacht̃ :

〈hj , x〉− 6 t̃ ∀j ∈ J,
x ∈ X,

whereJ = {j ∈ 0,1, . . . , k} : cj > t̃}.
This system was studied in [2], where an algorithm for finding its solution

was proposed (similar to dynamic programming). Applying this algorithm, we can
obtain a solution of the subproblem (21).

Another possibility is to reduce the system (21) to a problem of mixed integer
linear programming with 0-1 variables (see [3] and the references therein). It is a
well known technique which is based on introducing a large positive parameterM.

Then each constraint〈hj , x〉− 6 t̃ can be represented asn+ 1 linear constraints of
the form:

hj1x1−Myj1 6 t̃
hj2x2−Myj2 6 t̃
. . . . . . . . .

hjnxn −Myjn 6 t̃
n∑
i=1

yji 6 M − 1,

whereyji ∈ {0,1} for all i, j. If M is sufficiently large, this problem is equivalent to
the subproblem (21). This technique increases the dimensionality of the problem by
n binary variables in each iteration. However, it allows to apply existing software
packages for mixed integer linear programming in order to solve the subproblem.

9. Results of numerical experiments

A number of numerical experiments have been carried out for test examples, most
of which have multiple local minima which are not global. It has appeared that
some practical problems arising in engineering have an ISSI objective function and
a convex feasible set. In many cases it is possible to transform the initial problem
in order to reduce it to the problem (17).

Let us consider now the following test examples taken from the books [5, 7].
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EXAMPLE 1. [7]

0.01x2
1 + x2

2 → min

x1x2 > 25

x2
1 + x2

2 > 25

26 x1 6 50

06 x2 6 50.

The objective function in this (also, the next) example is not ISSI, but it is a
nonnegative quadratic function, so its square root was minimized instead which
is an IPH (hence, also an ISSI) function. The optimal solution of this problem is
the point(

√
250;√2.5) The best found solution is:

x1 = 15.811402;x2 = 1.581137.

The absolute precision by maximum norm is 0.000014 and the relative precision
by the objective function is 0.000003.In order to find this solution, the algorithm
required 18 iterations.

EXAMPLE 2. [7]

x2
1 + x2

2 + x2
3 → min

x2
1 + x2

2 − 1> 0

16 x1 6 10

− 106 x2 6 10

− 106 x3 6 10.

As the feasible domain for this test problem does not belong toRn+, it is neces-
sary to divide it into several parts and minimize the objective function over each
of them. The optimal solution of the problem is the point(1;0;0). The best found
solution is:

x1 = 1.000000;x2 = 0.000000;x2 = 0.000000.

The absolute precision by maximum norm is 0 and the relative precision by the
objective function is 0.In order to find this solution, the algorithm required 20 iter-
ations. Note that 12 iterations were necessary in order to find the optimal solution
within the precision 0.001.

In the next three examples the objective function is a sum of an ISSI and a linear
functions. It has the following form:

f (x) = g(x)+ [c, x],
whereg is an ISSI function andc ∈ Rn. In this case we introduced a new vari-
ablev = [c, x] for the linear part, thus the objective function becoming ISSI on
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Rn+. However, as in the optimal solutionv could be negative, it was necessary to
adjust slightly the subproblem, includingv inside min-type functions. Namely, we
generated subproblems of the following type:

t → min

min(〈hi, x〉− + v, ci + v) 6 t ∀i = 0, k

s.t. x ∈ X (22)

which can be reduced to mixed integer programming problems using the same
technique.

It is important to note that the algorithm allows to check optimality of the
best found point. If two subsequent iterates coincide, this means that they are a
global minimum point of the objective function (see [2]). The optimality has been
confirmed for examples 3 and 4 in this way.

EXAMPLE 3. [5]

x0.6
1 + x0.6

2 − 6x1 − 4u1 + 3u2→ min

x2 − 3x1 − 3u1 = 0

x1 + 2u1 6 4

x2 + 2u2 6 4

x1 6 3

u2 6 1

The optimal solution of this problem is the point(4/3;4;0;0) The best found
solution is:

x1 = 1.333333;x2 = 3.999999;

u1 = 0.000000;u2 = 0.000000.

The absolute precision by maximum norm is 0.000001 and the relative precision
by the objective function is 3· 10−7. In order to find this solution, the algorithm
required 12 iterations.

EXAMPLE 4. [5]

x0.6
1 + 2x0.6

2 + 2u1− 2x2 − u2→ min

x2 − 3x1 − 3= 0

x1 + 2u1 6 4

x2 + u2 6 4

x1 6 3

u2 6 2



MINIMIZING INCREASING STAR-SHAPED FUNCTIONS 35

Unfortunately, there is a misprint in the source of the test problem. The algorithm
gave the following best solution:

x1 = 0.000000;x2 = 2.999999;

u1 = 0.000000;u2 = 0.999999.

The absolute precision by maximum norm is 0.000001 and the relative precision
by the objective function is 2· 10−7. In order to find this solution, the algorithm
required 11 iterations.

EXAMPLE 5. [5]

x0.6
1 + x0.6

2 + x0.4
3 + 2u1 + 5u2− 4x3 − u3→ min

x2 − 3x1 − 3u1 = 0

x3 − 2x2 − 2u2 = 0

4u1 − u3 = 0

x1 + 2u1 6 4

x2 + u2 6 4

x3 + u3 6 6

x1 6 3

u2 6 2

x3 6 4

The optimal solution is the point(2/3;2;4;0;0;0). The best found solution is the
following point:

x1 = 0.666666;x2 = 2.000000;x3 = 3.999999

u1 = 0.000000;u2 = 0.000000;u3 = 0.000000.

The absolute precision by maximum norm is 0.000001 and the relative precision by
the objective function is 10−7. In order to find this solution, the algorithm required
27 iterations.

EXAMPLE 6. [7]

9x2
1 + x2

2 + 9x2
3 → min

x1x2 > 1

− 106 x2 6 10

16 x2 6 10

− 106 x3 6 1.
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Note that in this example the variables are not inRn+, thus it is necessary to sub-
divide the feasible region in order to get the optimal point. The objective function is
not ISSI, but it is nonnegative, so its square root was minimized instead of it (which
is an IPH function). This has been a difficult test for the algorithm. The optimal
solution of this problem is the point(1/

√
3;√3;0). The best found solution is:

x1 = 0.577328;x2 = 1.732118;x2 = 0.000000

The absolute precision by maximum norm is 0.000067 and the relative precision
by the objective function is 2· 10−7. In order to find this solution, the algorithm
required 72 iterations. In order to find the optimal solution within the precision
0.01 only 31 iterations were required. Probably, for problems of similar type it is
preferable to use hybrid methods, combining the global algorithm with local search
(in case of ICAR functions it allowed us to increase significantly the dimensionality
of solvable problems, see [2]).

EXAMPLE 7. [7]

2− x1x2x3→ max

x1 + 2x2 + 2x3 − x4 = 0

06 xi 6 1 i = 1,3,

06 x4 6 2.

The optimal solution of this problem is the point(2/3;1/3;1/3;2). The best
found solution is:

x1 = 0.667039;x2 = 0.333240;

x3 = 0.333240;x4 = 2.000000.

As the product of variables is not an ISSI function, we minimized instead of it
the cubic root of the objective function which is an IPH function. The absolute
precision by maximum norm is 0.000372 and the relative precision by the object-
ive function is 7· 10−8. In order to find this solution, the algorithm required 57
iterations.

Except these, a number of numerical experiments have been carried out with
Cobb-Douglas type objective functions which are very important in mathematical
economics.

COBB-DOUGLAS TYPE FUNCTION

f (x) =
n∏
i=1

x
αi
i , αi > 0.
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Note that if
∑m

i=1 ai < 1 then we have an ISSI function, if
∑s

i=1 αi > 1 we have an
increasing convex-along-rays (ICAR(X)) function [20]. A method for minimizing
ICAR(X) functions (a cutting angle method) was considered in [2] and it is very
efficient for small dimensions.

We give now the comparison between the performance of the algorithm for
ISSI functions and the cutting angle method. Note that for ISSI objective functions
and linear constraints the subproblem was solved by the software package CPLEX
MIP 4.0 (after its reduction to a problem of mixed integer programming). The
precision of solution for Algorithm 1 is clearly better, but the method of solving
the subproblem which is described in [2], is somewhat faster by time.

The constraint functiong was chosen either as a convex differentiable function,
or as a maximum of linear functions, or as a maximum of convex quadratic and
linear functions. Except this, problems with a constraint, given by a decreasing
convex or concave function, were considered.

The code has been written in Borland C++ for Windows 95 and has been also
implemented for the AIX 3.2 operating system on IBM RS 6000. The initial point
was chosen by convex optimization.

In the Table 1 - Table 2 (Appendix) we present the comparison of computational
results for Algorithm 1 and the cutting angle method for ten examples with Cobb-
Douglas type objective functions. The space dimension in these examples was
taken as equal to four. In the tables the precision, obtained after 50 iterations, is
given. In the third column we give the precision by norm‖xr − x∗‖ wherex∗
is the exact optimal solution which is known andxr is the best found feasible
point. In the last column we give the relative precision by objective which is equal
to (f (xr) − f (x∗))/(f (x0) − f (x∗)). In all cases the algorithm found a global
minimum within the precisionε = 0.0001.

The subproblem in Step 2 is of essentially combinatorial nature. This means
that, in general, its complexity grows exponentially with respect to the number of
variables. The present techniques of solving the subproblem allow us to solve prob-
lems with 8-10 variables. Note, however, that if the number of variables is fixed,
the complexity with respect to the number of min-type functions is polynomial.

The experiments show that the algorithm considered in this paper can outper-
form the cutting angle method in many cases, probably due to the fact that some
constraints in the subproblem are redundant and this reduces its dimensionality. It
is important that the algorithm is applicable not only to minimization, but also to
maximization problems with increasing positively homogeneous functions.
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Appendix

Table 1. Results for Algorithm 1

Number of Number of Precision Relative precision

problem iterations by norm by objective

1 50 0.000007 0.000012

2 50 0.000012 0.000024

3 50 0.000022 0.000109

4 50 0.000004 0.000006

5 50 0 000005 0.000001

6 50 0 000033 0.000007

7 50 0.000055 0.000028

8 50 0 000003 0.000009

9 50 0.000044 0.000086

10 50 0.000008 0.000010

Table 2. Results for cutting angle method

Number of Number of Precision Relative precision

problem iterations by norm by objective

1 50 0.007460 0.003552

2 50 0.005095 0.000606

3 50 0.002252 0.000393

4 50 0.002821 0.000799

5 50 0.010630 0.001746

6 50 0.001661 0.000071

7 50 0.000776 0.001035

8 50 0.001048 0.000342

9 50 0.000690 0.001067

10 50 0.000347 0.000960
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