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Abstract. We study a broad class of increasing non-convex functions whose level sets are star shaped
with respect to infinity. We show that these functions (we call them ISSI functions) are abstract
convex with respect to the set of min-type functions and exploit this fact for their minimization. An
algorithm is proposed for solving global optimization problems with an ISSI objective function and
its numerical performance is discussed.
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1. Introduction

There exist a number of techniques for finding a global optimum of a non-convex
function, each of them has advantages and shortcomings. As there is no univer-
sal algorithm which would be efficient for any global optimization problem, it is
most important to create conceptual and numerical schemes which will lead to
the solution of problems with objective functions and/or constraints with special
properties.

In this paper we consider an approach to global optimization which is based
on the use of abstract convexity, in other terms, ‘convexity without linearity’ (see
[13, 16, 23)). It allows to extend the convex analysis to broad classes of non-convex
problems and to generalize known methods of cutting plane or bundle type for
optimization problems with abstract convex objective functions.

There are a number of numerical algorithms which are actually based on ab-
stract convexity ideas. For instance, the algorithm of Mladineo (see [15]) for max-
imizing Lipschitz functions can be considered as a method of abstract convex pro-
gramming with quadratic convex functions as majorants of the objective. Recently,
the cutting angle method for minimizing the so-called increasing convex-along-
rays (ICAR) functions has been proposed which is based on the representation of
the objective as the supremum of min-type functions (see [2]).

In this paper we consider a class of objective functions which are increasing and
have star-shaped (with respectty) level sets (we call them ISSI functions). Such
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functions form a lattice and have a number of nice properties simplifying their op-
timization. The mathematical programming problems with ISSI objective functions
have various applications in practise, especially in mathematical economics which
makes them very significant. For instance Intriligator [11] considers the functions
with this property as the main kind of production functions.

In general, an ISSI function has multiple local extrema and it is neither con-
vex nor concave. Hence it is impossible to apply to its minimization local search
methods or methods of concave minimization directly. Since ISSI functions can be
approximated by the so-called min-type functions due to their abstract convexity
properties, the problem of minimizing an ISSI function can be reduced to a se-
guence of minimax problems, or to a sequence of problems of mixed integer linear
programming. Certainly, each subproblem of this type is difficult to solve and its
complexity grows fast with respect to the dimensionality of the initial problem.
However, using special reduction techniques, it is possible to obtain good numer-
ical performance, if the number of variables is not large. It can be advantageous to
combine methods based on abstract convexity with a local search, thus obtaining
hybrid methods. In this case the abstract convex programming is used in order to
find an approximate solution and the local search improves it. It is important to
note that many optimization problems can be reduced to a problem with an ISSI
objective function by a suitable transformation of variables.

2. Preliminaries

In the sequel we shall need some definitions from abstract convexity (for detailed
presentation see [16, 13, 23]).

DEFINITION 2.1. LetX be an arbitrary setanHl : X — R be a set of functions.
A function f : X — R, = R U {400} is calledabstract convexvith respect to
H or H-convex if there is a sdf ¢ H such that

f(x)=supgh(x) :heU} forall xeX.

A function f : X — R_,, is calledabstract concavavith respect toH or H-
concave if there is a sé&f C H such that

f(x)=inflh(x) :h e U} forall x e X.

The setH in this definition is called sometimes tket of elementary functions
Let

s(fHH={heH:h< [} si(f)={heH:h=>f}

It follows immediately from the definition that a functighis H-convex (respect-
ively H-concave) if and only iff(x) = sugh(x) : h € s_(f)} (respectively
) =inflh(x) : h € s.(f)).
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Applications of abstract convexity are mainly based on the notion of the sub-
gradient. There are various approaches to the definition of subgradients (see [16,
23, 20]). For our purpose the most suitable is the following one.

DEFINITION 2.2. A functionh € H is called asubgradientof an H-convex
function f at a pointx, if h(x) < f(x) forall x € X and f(x,) = h(x,). A
function € H is called asupergradienof a H-concave functionf at a pointx,
if h(x) > f(x)forallx € X andh(x,) = f(x,).

The set of all subgradients (supergradients) Hf-aonvex { -concave) functiory
at the pointx, is called thesubdifferentiathe superdifferential) off at the pointx.
It follows directly from the definition that the subdifferential Bf-convex function
f at a pointx, is not empty if and only iff (x,) = max{h(x,) : h € s_(f)}.

3. Star-shaped functions

A real-valued functionf defined on a con& in a n-dimensional spac®&” is
called O-star-shaped (or star-shaped with respect to Pjik) < Af(x) for all

x € K and all nonnegativé < 1. This term was introduced in a slightly different
situation by Pallaschke and Rolewicz ([16]).fifis O-star-shaped then its lower
level sets{x : f(x) < c} are O-star-shaped for all > 0. Recall that a set is
called O-star-shaped if

xeA, Le[0,1] = Aix e A.

Of course there exist non 0-star-shaped functions with O-star-shaped level sets. A
full description of such functions is given in [22] (for the case, when the done
coincides with the entire space).

The complement to a 0-star-shaped set is the so-calbedstar-shaped set (see
[19] for details), that is a se® with the property

xe€B, A >1 = Ax € B.

Convex+oo-star-shaped sets have been studied by many authors (see for example
[17, 4, 14] and references therein).

Having in mind this terminology, we introduce the following definition: A real-
valued functionf defined on a con& is called+oco-star-shapedf

f(x) > Af(x) foral xeKk,ael01] 1)

Note thatf (0) > 0 for a+oo-star-shaped function.
It is easy to check thaf is +oco-star-shaped if and only if

flpx) <pf(x) forall xeK, p>1 @

Indeed, letf be+oo-star-shaped . Lai > 1, x € K andux = x’. Sincex = Ax’
with A = 1/u < 1, itfollows that f (x) > Af (x"). We have proved that (1) implies
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(2). The same reasoning shows that (2) implies (1). We will consider maitxty
star-shaped functions defined on the cdtie of all n-vectors with nonnegative
coordinates. Sometimes we will consider the restriction of such functions on the
coneR’, | of all vectors with positive coordinates.

The coneR’} introduces the usual coordinate-wise order relation in the space
R". We will use the following notationt > y if x —y e R}; x > yif x > y and
x #yandx > yif x —y € R . Afunction f defined on the coni’, is called
increasing ifx > y implies f(x) > f(y).

We will study in this paper increasingoo-star-shaped (briefly ISSI) functions.
Since an ISSI functiory is increasing and (0) > 0 it follows that f(x) > O for
allx e RY,.

Let us check that an ISSI functiofiis continuous on the cori@’, . . In fact let
x> 0and x — x. Lete > 0. Then for sufficiently largé we have(l — g)x <
xr < (14 e)x. Using properties of the functiofi and (1), (2) we have

Q-8 f() < f(A—e)x) < flx) < f(A+e)x) <A+e)fx).

The continuity has been proved.
The setF(1SST) of ISSI functions possesses the following useful properties.

(1) F(SSI)isaconvex cone: if, g are ISSl and., u are positive numbers then
alsorf + ug is ISSI;

(2) FUSSI) is a conditionally complete lattice; more precisely, for an arbitrary
family (f,)«ca Of ISSI functions the point-wise infimum inf, £, is ISSI
as well. If the family(f,).c4 is bounded above, that is there exists a ISSI
function f such thatf, < f for all @ € A, then the point-wise supremum
Sup,.4 f« is also ISSI.

(3) If the family f; of ISSI functions point-wise converges to a finite functifn
then f is also an ISSI function.

We need the following definitions. An increasing functign: R, — R is
calledconvex-along-raygbriefly ICAR(X)) if for eachx e R} the functionf, =:
f(ax) is convex on(0, +00). An increasing functionf is calledconcave-along-
rays (briefly ICAR(E)) if the function f, («) is concave on0, +oc0) for eachx €
R’ . ICAR(X) functions are studied in details in [20]. It is easy to check that an
ICAR(E) function f such thatf (0) > 0 is ISSI. In fact we have for eache R’,
anda € [0, 1]:

FOx)=fi() = A+ Q=20 221/, (D+ A -2)f(O) = Arf(x).
Let us give some examples of ISSI functions.

EXAMPLE 3.1. An increasing positively homogeneous of degree @ < 1
function f is ISSI. Indeed such a function is ICAR(E). @f > 1 then f is an
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ICAR(X) function). In particular a Cobb-Douglas function

n

f(x)=Cxi*---x2 with o >0, Zai <1 (3)

is ISSI. Note that if)_; ; > 1 then the Cobb-Douglas function is ICAR(X). The

function f,(x) = (&, xl.”)% (x € R%) with p > 0 is also ISSI. Note that this
function is convex ifp > 1 and concave ip < 1.

EXAMPLE 3.2. A concave increasing functiofi defined onR’, with f(0) > 0
is ISSI. Indeedf is ICAR(E). In particular the sum of two functions of the form
(3) is concave increasing.

EXAMPLE 3.3. The point-wise supremurfi of a family of ICAR(E) functions
(f2)wea is an 1SSl function, provided (x) < +oo for all x. Note that this function
is not necessary ICAR(E).

EXAMPLE 3.4. Letfi,..., fi be increasing positively homogeneous of degree
0 < & < 1 functions. Then their sum, minimum and maximum are ISSI functions.

4. |SSI functions and IPH functions

There exist close relations between ISSI functions and the so-called IPH functions
(IPH stands foincreasingandpositively homogeneous of degree dmactions).

In order to establish these relations we need the following definition;f Lis
a function defined on a cor®’ . A function f defined on the cone

R = {(x,1) : x e R", 1 > 0} U {0, 0} @

by the formula
Fe,n) = xf(;), (xeK,A>0), £(0,0) =0. (5)

is called thepositively homogeneous extensifrthe functionf.
The following result has been proved in [1]. We give its proof for completeness.

THEOREM 4.1. A function f defined onR”, is ISSI if and only if its positively
homogeneous extensigfr{x, A) is increasing in both variables, .

Proof: Let f be an ISSI function. Sinc¢(x) > 0 for all x e R’ it follows
thatf(x, A) = Af(x/A) = 0. Consider now two pointéxy, A1) and (x,, Ap) with
X1, X2 € Rﬁ_, X1 = xp andiq > A» > 0. We have

N X1 X5 A2 X X2 2
fx1, A1) = Klf(k—l) > )\lf(k_l) = Mf()\—l)h—z) > Xzf(k—z) = f(x2, A2).



24 A. M. RUBINOV AND M. YU. ANDRAMONOV

Thus f is an increasing function. We now assume thats increasing. Then
f(x,2) > f(©,00 = 0, in particular f(0) = f(0,1) > 0. If x; > x, then

f(x) = f(x1,1) = f(x2,1) = f(xp). Thus f is increasing. Lek € (0, 1). Then

(Ax, 1) < (Ax, 1), hence

M) = fx, ) < fOx, D) = fOx).
If A =0then 0= Af(x) < f(0) = f(Ax). Thusf is ISSI function. O

REMARK 4.1. The same reasoning shows that the following assertion holds:
a function f defined onR’, is O-star-shaped and decreasing if and only if the

positively homogeneous extensigris decreasing in both variables.

Theorem 4.1 allows to study ISSI functions with the help of IPH functions,
which are simpler.

5. IPH functions

We study increasing positively homogeneous of the first degree(IPH) functions in
this section. The simplest examples of IPH functions are given by min-type and
max-type functions:

I_(x) = ig}'g) lixi :=={l, x) (6)

and

Ly (x) = mad;x; = i, x)*. (7)
le

Herel = (I,...,L,) e R, I ={1,2,... ,ntand7 () ={i eI :I; > 0} ltis
assumed the the minimum over the empty set is equal to zero.

We denote minr) l;x; by (I, x)~ and max, /;x; by (I, x)*.

We will show in this section that each IPH function definedRihis abstract
convex with respect to the sét~ of min-type functions of the form (6) and the
restriction of each IPH function on the cofg | is abstract concave with respect
to the setZ* of all max-type functions of the form (7).

For this purpose we will consider the subdifferential (y) of an IPH function
p with respect taC~ and the superdifferentialp™ (y) of the functionp with respect
to L (see Definition 2.2). By this definition

I py={leR: {x)" <pkx)VxeR|, (,y)” =pO}

Ip(y)={leRy: {,x)" > px) Vx eR}, {,y)" =pH)}.
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, 1
For/ € R, we define the vectar* = 7 by the formula:

1
1 - ieT()

! 0i¢T)
Clearly,(/, 3)~ = (I, 3)* = 1forl # 0.

PROPOSITION 5.1.Let p be an IPH function. Then the s&bp—(y) is hot empty
forall y > O; if p(y) > Othen

_ (y 1
TP = TOCTM > 22 p()=1) ®)
where the coordinatéy,); of the vectory, is equal to coordinate; of the vectory

if i € 7()and equal to zero if ¢ 7 (I).

Proof: If p(y) = 0then Oc 3~ p(y) and therefor®~ p(y) is nonempty. Consider
now a pointy with p(y) > 0. Let
1
A= TO CToL 1= B2 ) > 1),
1
Itis easy to check that is equal to the set on the right hand side of (8). Indeed let
[ € A. The relations/ (I) c 7 (y) andl > p(y)/y, show thaty, > p(y)/I. Since
pislIPH,y > yyandp(1/l) > 1 we have

p(y) = pOn) = p(&)—p(y)p() Z p(y).

Sop(1/1) = 1 and the required equality has been proved.

Thus we should prove that™p(y) = A. Letl € A. First we check that
(I, x)~ < p(x) for all x € R’,.. Assume on the contrary that there exists R’
such that{/, z)~ = min;ezr ) lizi > p(z). Thenl;z; > p(z) foralli € 7(¢), hence
T () c T () and there exists > 0 such that

L P

Zi = Z + IE forall i e 7).

Thusz > (p(z) + €)(1/1). Sincep is increasing it follows that

p() = p((p(z) +&)— )—(p(z)+8)p() p(2) +e.

We have a contradiction, hen¢g x)~ < p(x) for all x € R”.. Consider now the
vectory. Since7 (I) C 7(y) andl > p(y)/y,, it follows thatl;y; > p(y) for all

i € T(). Thus(l,y)~ > p(y). The inequality(l, y)~ < p(y) has already been
proved. Thugl, y)~ = p(y) and thereford— p(y) D A.
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We now check that the sdtis not empty. Indeed lét= p(y)/y. Then7 (I) =
7 (y). Sincep(y) # 0, the vector 1/ & y/p(y) is well-defined ang(1/1) = 1.
Thusl € A. We have proved that the subdifferential p(y) is not empty.

Let us show thad~p(y) Cc Aif p(y) > 0. Letl € 3~ p(y) thatis(l,x)” <
p(x) for all x and miner o) iy = (I, y)~ = p(y). Sincep(y) > 0 it follows
thaty; > O fori € 7(I), henceZ (I) C 7 (y). The inequalityl;y; > p(y) for all
i € 7(I) shows that > p(y)/y;. We also have

1

1 _
P(;) = (I, j) =1

Thus! € A. O

COROLLARY 5.1. If p(y) > 0thent = 22 ¢ 5= p(y).
y

COROLLARY 5.2. An IPH function is abstract convex with respect to theset
of functions of the form (6).

REMARK 5.1. Consider an IPH functiop of n + 1 variables defined on the cone
R+ = {(x,1) : x € R", 2 > 0} U {0, 0}. Clearly Proposition 5.1 and Corollary
5.2 hold also for this function.

A function p is calledstrictly increasing at a poiny € R’ if for eachx € R,
with x < y the inequalityp(x) < p(y) holds. Itis clear thap(y) > 0 for an IPH
function p, strictly increasing at a point.

PROPOSITION 5.2.1f an IPH functionp is strictly increasing at a poing then

led py), TH=T(y) = |l = %

Proof: It follows from Proposition 5.1 that we have to check that the relations

1
T =70, 1252 -1 ©

imply I = p(y)/y. Takel such that (9) holds. Clearly > p(y)/l. Assumey #*
p(y)/1. Sincep is strictly increasing at the pointwe have

ry)
l
Thusp(1/1) < 1 which is a contradiction. O
Let us give some examples.

EXAMPLE5.1. Letp(x) = max¢; x; andl=(1,1,...,1). Then

1
p(y) > p( ) = p(y)p(j) and p(y) >0

1
o pL={:1>21, mx—=1={:1>1, min/ =1}
pD) ={ i max - =1 6 min }
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EXAMPLE 5.2. Letp(x) = min;¢; x;. We have

1
O pH)={:1>21, mn-=1}={l:1>1, maxl, =1}.
P ={ ! ieT() b=t ! i€T () }
Thusd~—p(1) = {1X : K c I} wherelX is a vector such that that itth coordinate
is equal to 1 fori € K and equal to zero foi ¢ K. In other words,d~ p(1)
coincides with the set of all non zero vertices of thdimensional cubéx : 0 <
x < 1L

EXAMPLE5.3. Letp(x) = (x1 - xz---x,,)%. It is easy to check that the IPH
function p is strictly increasing at the poirdtand the inequalityZ, x)~ < p(x) for
all x implies7 (1) = I. It follows from Proposition 5.2 that~ p(1) = {1}.

We shall now study the superdifferential
Atp(y) =l eRL: (I, x)" > pkx) Vx eRY, (I, )" = p(y)}

of an IPH functionp at a pointy € R’ with respect to the sef*. Let us give
an example which shows that the superdiffererttiab(y) can be empty for some
pointsy € R}.

EXAMPLE 5.4. Letp be an IPH function such that

(1) there exists a non-zero elementvith the propertyp(y) = 0 (in this casey
is a boundary point of the cori&});

(2) if x* = x1) +x(, Wherexy, is a fixed vector fronR”, |, 7 (x(,) C 7 (y) and
||xé‘2)|| — 400 ask — oo, thenp(x*) — +o0.

Assumel € 31 p(y). Then(l, y)* = max¢; ;y; = p(y) = 0, hencd; = 0 for
i € 7T(y). Thus7 () c (I \7(y)). Letx > 0 be a vector such thats; = 1 for
i € T(l) andx; fori ¢ 7 (1) be sufficiently large so that(x) > 1. (It follows from
2) that such a vector exists). Sinfex)™ = 1, the inequality(/, x)* > p(x) does
not hold. Thuss™ p(y) is empty.

Consider in particular a functiop(x) = (x1-x2 - - -xn)%. It follows from above
that the superdifferentiad™ p(y) is empty for each boundary poiptof the cone
R

Nevertheless, ify > 0 then the superdifferential™® p(y) is nonempty and it
contains interior points of the cori] .

PROPOSITION 5.3.Let p be an IPH function and > 0. Thend* p(y) N R’
is nonempty and
p(y) 1

FpMNRL, ={I>»0:1< Ty p(;) =1} (10)
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Proof: We will use the same arguments as in the proof of Proposition 5.1. First we
show that the set on the right hand side of (10) coincides with the following set

1
@, p(7) <1}

B={>0:1< ;

Indeed, ifl € B theny < p(y)/[, hence

p(y) < (&)—p(y)p( ).

Sincep(y) > 0 we havep(1/l) > 1. On the other hang(1//) < 1. Thus the
required equality has been proved. Let B. Sincel < p(y)/y it follows that

max [;y; = maxd; y; = {I, < p»). (12)
i€ (y)

We now check that/, x)* > p(x) for all x € R’,. Assume, on the contrary,
that there exists such that/, z)™ < p(z). Thenl;z; < p(z) foralli € I, therefore
z < p(z)/1. There existg > 0 such that{l + ¢)z < p(z)/l. We have

A+e)p) =p((1+e)z) < p(ﬁ) = p(z )p( )

Since p(z) > 0 it follows tha'[p(%) > 1+ ¢. We have a contradiction which
shows that/, x)* > p(x) for all x. In particular,{/, y)* > p(y). Combining this
inequality with (11) we conclude thdt, y)* = p(y). Thusl € a1 p(y). Clearly,
the element = p(y)/y belongs to the sek. Thus the superdifferential* p(y) is
not empty.

Assume now that an elemehts> 0 belongs td* p(y). Then 1= ([, 1/1)" >
p(1/1D). It follows from the equalityl, y)* = p(y) that! < p(y)/y. Thusl € B.O

COROLLARY 5.3. The restriction of IPH function on the cori®, , is abstract
concave with respect to clags'.

6. Subdifferentials and superdifferentials of ISSI functions

In this section we study ISSI functions using results of the previous sections.

Let f be an ISSI function. Consider its positively homogeneous extengion
defined on the conB”*! (see (4) for the definition of this cone).

It follows from Theorem 4.1 thaf is an IPH function on the corie’*?, so (see
Corollary 5.2 and Remark 5.1) this function is abstract convex with respect to the
set£~ of all functions/ defined onR’ﬂl by the formula (6). We present a vector
[ e R inthe formi = (/, ¢) wherel € R, ¢ > 0. Letx € R and# = (x, 1).
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We have

f@) = f@&
=sug min i;% : [ € £7,1 < f}
leT(l)

= sup{mm(n}i(r;) Lixi,e): l=(,c),le L ,c>0,1< f} (12)
1S

It follows from (12) thatf is abstract convex with respect to the &gt of functions
h: R} — R, of the forma(x) = min({/, x)~, ¢) with [ € R, andc > 0.

Let f be an ISSI function and € R’ . Denote byd~ f(y) the subdifferential
of the functionf at the pointy with respect to the s&t¢~—. If f(y) = 0 then this
subdifferential is not empty, it contains the functibn= 0 which belongs tdH.
Assume now thay (y) > 0. Then£($) = f(y) > 0 and therefore (see Corollary
5.1)

f» _ fo
—Q = €
y oD

It follows from this inclusion that

£ = 76 =mingmin 22, L) —min 22,507, fon @9

3~ f ().

and for eachr € R’}

mmfy X7 FO) < F D) = £, (14)

Let

h(x) = min({

LD = rom.
y
It is clear thath € H~. Formulae (13) and (14) show thgtis an element of the
subdifferentiald~ f (x) of the functionf at the pointx with respect to the sét~.
Thusd~ f(x) is not empty.
We now give a description of the subdifferenti@t f(x), by assuming that
f(x) > 0. Applying Proposition 5.1 and Remark 5.1 we can conclude that

A

0~ f(x)_{l_(l M)eR”“ T(l)cT(x) f f% 1} (15)
Since

~ 1 1. 1 u

—— ) =ZF(ED)==f(&

f((l’u)) Mf(l ) uf(l)
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we can present (15) in the following form:

f@

X1

> f(x), f(%) = ). (16)

fE®) =l w eR xRy : T CT () : 1> w

Clearlyd~ f (x) coincides with the set on the right side of (16).

The same arguments show that the restriction of an ISSI fungtion the cone
R’ , is abstract concave with respect to the’gét of max-type functiong: of the
form h(x) = max((/, x)*, c) with I € R", andc > 0 . We can easily describe the
superdifferential of the functiorf at a pointy > 0 with respect to the sé{*. In
particular the function

NAS))
(——,x
y

h(x) = max( IRINAGY))

belongs to the superdifferential.

7. Algorithm
We consider the following optimization problem
f(x) — min subjectto x € X (a7)

where f is an ISSI function (in particular, it can be an IPH functioK)is a closed
convex set fronR, .

We propose for the solution of this problem a variant of @bundle method,
the conceptual scheme of which can be found in (see [16]). Note that for IPH
functions it is possible to apply the so called "cutting angle method" proposed in
[2]. However, the method which we consider in this paper, is different, as instead
of the minorants of the type miié;x; + ¢ we use the functions mfimin; ¢;x;, c}.
The algorithm can be considered as an extension of the cutting plane method [12]
for convex optimization to a problem with an ISSI objective function.

ALGORITHM 1. Method of minimizing an ISSI function

Step OLet k := 0. Choose an arbitrary initial point, € X.
Step 1.Calculate an element of the subdifferentiak, c¢;) € 9; f(xr). Denote
Si(x) = min({hg, x) 7, cr)-
Step 2 Solve the following subproblem

max f;(x) —> min subjectto x € X. (18)

0<i<k
Step 3Let y* be a solution of the problem (18). Let=k + 1, x, = y*and go to
step 1.

The convergence theorem for this algorithm is the following.
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THEOREM 7.1. Let X be a compact set and the directional derivativgéx) be
uniformly bounded on the sét:

||fk'(x)||=”m|&)§|fk'(x,u)|<R<+oo forall xe X, k=0,1,... (19

Then each limit pointc of the sequencéx;) is a global minimum point of the
problem (17).

Proof: Obviously, fi(x) are concave functions. As the directional derivatives of
them are bounded, the conditions of a theorem of convergence from [2] are satis-
fied. Applying this theorem, we obtain the convergence result. O

If we have a maximization problem,

f(x) — max subjectto x € X, (20)

where f is an ISSI function andX C R’ ,, the situation is similar. Instead of

an element of the subdifferential we need to take an element of the superdifferen-
tial and instead of minimizing the maximum ¢f(x) we need to maximize the
minimum of f;,. The same convergence result holds (the proof is analogous).

In general, it is difficult to apply & —bundle method for minimizing an abstract
convex function, as there is no explicit formula for its subdifferential. The main
advantage of ISSI functions is that it is possible to calculate an element of the
abstract subdifferential numerically. This allows to construct a fully implementable

algorithm of their minimization.

8. Solution of the subproblem

The crucial part of our method is the solution of the auxiliary subproblem in Step 2.
Let us express the subproblem in the following form:

t — min
min((h;, x)",¢;) <t Vi=0k
st. xekX 1)
Asc; > Ofor alli due to the properties of ISSI functions, the optimal value of

t is in the interval[0, max_gz min({%;, x0)~, ¢;)]. Applying the dichotomy with
respect ta, we obtain a sequence of the systems:

min((h;, x)",¢;) <7 Vi =0k,
x eX,
wherer is some fixed value in the intervgd, max_gz Min({k;, xo)~, ¢;)].

Then, if for somej we havec; < 7, the corresponding inequality is redundant
and it can be eliminated. Vice versacif > 7, then the corresponding constant
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is redundant and the same constraint can be rewritten without the constant. Thus
we obtain the following system for each

(hj,x)” <7 Vjel,
x e X,

whereJ = {j €0,1,... ,k}:¢; > 1}.

This system was studied in [2], where an algorithm for finding its solution
was proposed (similar to dynamic programming). Applying this algorithm, we can
obtain a solution of the subproblem (21).

Another possibility is to reduce the system (21) to a problem of mixed integer
linear programming with 0-1 variables (see [3] and the references therein). It is a
well known technique which is based on introducing a large positive paraieter

Then each constrairt ;, x)~ < t can be represented as- 1 linear constraints of
the form:

wherey;; € {0, 1} forall i, j. If M is sufficiently large, this problem is equivalent to
the subproblem (21). This technique increases the dimensionality of the problem by
n binary variables in each iteration. However, it allows to apply existing software
packages for mixed integer linear programming in order to solve the subproblem.

9. Results of numerical experiments

A number of numerical experiments have been carried out for test examples, most
of which have multiple local minima which are not global. It has appeared that
some practical problems arising in engineering have an ISSI objective function and
a convex feasible set. In many cases it is possible to transform the initial problem
in order to reduce it to the problem (17).

Let us consider now the following test examples taken from the books [5, 7].
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EXAMPLE 1. [7]

0.01% + x3 — min
X1X2 2 25

The objective function in this (also, the next) example is not ISSI, but it is a

nonnegative quadratic function, so its square root was minimized instead which
is an IPH (hence, also an ISSI) function. The optimal solution of this problem is

the point(+v/250, v/2.5) The best found solution is:

x1 =15.811402x, = 1.581137.

The absolute precision by maximum norm @014 and the relative precision
by the objective function is 0.0000081 order to find this solution, the algorithm
required 18 iterations.

EXAMPLE 2. [7]
X7+ x% 4 x3 — min
X24x2-1>0
1<x1 <10
—10<x2, <10
—10< x3 < 10.

As the feasible domain for this test problem does not belom/;toit is neces-
sary to divide it into several parts and minimize the objective function over each
of them. The optimal solution of the problem is the pditxt0; 0). The best found
solution is:

x1 = 1.000000;x; = 0.000000;x, = 0.000000.

The absolute precision by maximum norm is 0 and the relative precision by the
objective function is Oln order to find this solution, the algorithm required 20 iter-
ations. Note that 12 iterations were necessary in order to find the optimal solution
within the precision @O1.

In the next three examples the objective function is a sum of an ISSI and a linear
functions. It has the following form:

fx) =gkx)+lc, x],

whereg is an ISSI function and € R”. In this case we introduced a new vari-
ablev = [c, x] for the linear part, thus the objective function becoming ISSI on
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R’ . However, as in the optimal solutiancould be negative, it was necessary to
adjust slightly the subproblem, includingnside min-type functions. Namely, we
generated subproblems of the following type:

t — min
min((h;, x)” +v,¢c; +v) <t Vi=0k
st. xeX (22)
which can be reduced to mixed integer programming problems using the same
technique.
It is important to note that the algorithm allows to check optimality of the
best found point. If two subsequent iterates coincide, this means that they are a

global minimum point of the objective function (see [2]). The optimality has been
confirmed for examples 3 and 4 in this way.

EXAMPLE 3. [5]

x8'6+xg'6—6x1—4u1+3u2 — min
X —3x1 —3u; =0

x1+2u; <4

X +2ux < 4

x1 <3

u» <1

The optimal solution of this problem is the poitt/3; 4; 0; 0) The best found
solution is:

x1 = 1.333333;x, = 3.999999;

u1 = 0.000000;u, = 0.000000.

The absolute precision by maximum norm i9@001 and the relative precision
by the objective function is 310~". In order to find this solution, the algorithm
required 12 iterations.

EXAMPLE 4. [5]

x8'6+2xg'6+2u1—2x2—u2—> min
xp—3x1—3=0

x14+2u; <4

x2+upx <4

x1 <3

U <2
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Unfortunately, there is a misprint in the source of the test problem. The algorithm
gave the following best solution:

x1 = 0.000000;x, = 2.999999;

u1 = 0.000000;u, = 0.999999.

The absolute precision by maximum norm i9@001 and the relative precision
by the objective function is 210~7. In order to find this solution, the algorithm
required 11 iterations.

EXAMPLE 5. [5]

x8'6+xg'6+x§'4+2u1+5u2—4x3—u3—> min
X —3x1—3u; =0

x3—2xp —2u> =0

Qui —u3z3=0

x1+2u1 <4

X2 +ux <4

x3+u3<6

The optimal solution is the poiri2/3; 2; 4; 0; 0; 0). The best found solution is the
following point:

x1 = 0.666666;x, = 2.000000;x3 = 3.999999

11 = 0.000000;u, = 0.000000;43 = 0.000000.

The absolute precision by maximum norm i®@001 and the relative precision by
the objective function is 10. In order to find this solution, the algorithm required
27 iterations.

EXAMPLE 6. [7]

9% + x2 4 9x3 — min
xxo =1

—10<x2, <10
1<x <10
—10<x3 <L
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Note that in this example the variables are noRih, thus it is necessary to sub-
divide the feasible region in order to get the optimal point. The objective function is
not ISSI, but it is nonnegative, so its square root was minimized instead of it (which
is an IPH function). This has been a difficult test for the algorithm. The optimal
solution of this problem is the poirt/+/3; v/3; 0). The best found solution is:

x1 = 0.577328;x, = 1.732118;x, = 0.000000

The absolute precision by maximum norm @067 and the relative precision

by the objective function is 210~7. In order to find this solution, the algorithm
required 72 iterations. In order to find the optimal solution within the precision
0.01 only 31 iterations were required. Probably, for problems of similar type it is
preferable to use hybrid methods, combining the global algorithm with local search
(in case of ICAR functions it allowed us to increase significantly the dimensionality
of solvable problems, see [2]).

EXAMPLE 7. [7]

2 — x1x2x3 — max
X1+ 2% +2x3—x24=0
0<x<1i=13,
0<xs <2

The optimal solution of this problem is the poi(&/3; 1/3; 1/3; 2). The best
found solution is:

x1 = 0.667039;x, = 0.333240;

x3 = 0.333240;x4, = 2.000000.

As the product of variables is not an ISSI function, we minimized instead of it
the cubic root of the objective function which is an IPH function. The absolute
precision by maximum norm is.000372 and the relative precision by the object-
ive function is 7- 10°8. In order to find this solution, the algorithm required 57
iterations.

Except these, a number of numerical experiments have been carried out with
Cobb-Douglas type objective functions which are very important in mathematical
economics.

COBB-DOUGLAS TYPE FUNCTION

f(x) = l_[xf”, a; > 0.
i=1
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Note thatify_!" ; a; < 1 then we have an ISSI function,Xf;_; «; > 1 we have an
increasing convex-along-rays (ICAR(X)) function [20]. A method for minimizing
ICAR(X) functions (a cutting angle method) was considered in [2] and it is very
efficient for small dimensions.

We give now the comparison between the performance of the algorithm for
ISSI functions and the cutting angle method. Note that for ISSI objective functions
and linear constraints the subproblem was solved by the software package CPLEX
MIP 4.0 (after its reduction to a problem of mixed integer programming). The
precision of solution for Algorithm 1 is clearly better, but the method of solving
the subproblem which is described in [2], is somewhat faster by time.

The constraint functiog was chosen either as a convex differentiable function,
or as a maximum of linear functions, or as a maximum of convex quadratic and
linear functions. Except this, problems with a constraint, given by a decreasing
convex or concave function, were considered.

The code has been written in Borland C++ for Windows 95 and has been also
implemented for the AIX 3.2 operating system on IBM RS 6000. The initial point
was chosen by convex optimization.

In the Table 1 - Table 2 (Appendix) we present the comparison of computational
results for Algorithm 1 and the cutting angle method for ten examples with Cobb-
Douglas type objective functions. The space dimension in these examples was
taken as equal to four. In the tables the precision, obtained after 50 iterations, is
given. In the third column we give the precision by nofim. — x*|| wherex*
is the exact optimal solution which is known anmdis the best found feasible
point. In the last column we give the relative precision by objective which is equal
to (f(x,) — f(x*)/(f(x0) — f(x®). In all cases the algorithm found a global
minimum within the precisiom = 0.0001.

The subproblem in Step 2 is of essentially combinatorial nature. This means
that, in general, its complexity grows exponentially with respect to the number of
variables. The present techniques of solving the subproblem allow us to solve prob-
lems with 8-10 variables. Note, however, that if the number of variables is fixed,
the complexity with respect to the number of min-type functions is polynomial.

The experiments show that the algorithm considered in this paper can outper-
form the cutting angle method in many cases, probably due to the fact that some
constraints in the subproblem are redundant and this reduces its dimensionality. It
is important that the algorithm is applicable not only to minimization, but also to
maximization problems with increasing positively homogeneous functions.

Acknowledgments

The authors are grateful to the anonymous referee for insightful comments.



38 A. M. RUBINOV AND M. YU. ANDRAMONOV

Appendix

Table 1. Results for Algorithm 1

Number of Number of Precision Relative precision

problem iterations by norm by objective
1 50 0.000007 0.000012
2 50 0.000012 0.000024
3 50 0.000022 0.000109
4 50 0.000004 0.000006
5 50 0000005 0.000001
6 50 0000033 0.000007
7 50 0.000055 0.000028
8 50 0000003 0.000009
9 50 0.000044 0.000086

10 50 0.000008 0.000010

Table 2. Results for cutting angle method

Number of Number of Precision Relative precision

problem iterations by norm by objective
1 50 0.007460 0.003552
2 50 0.005095 0.000606
3 50 0.002252 0.000393
4 50 0.002821 0.000799
5 50 0.010630 0.001746
6 50 0.001661 0.000071
7 50 0.000776 0.001035
8 50 0.001048 0.000342
9 50 0.000690 0.001067

10 50 0.000347 0.000960
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